

Elenco Esercizi Pratici e Domande Seminari

Prof. Filippo Milotta milotta@dmi.unict.it

Come leggere l'elenco

Parte 1 Acustica, Psicoacustica, Digitalizzazione

Esercizio pratico	Autov	Slide
Parametri fisici – Onda sinusoidale	1	1-29
RMS	2	2-6
Decibel Assoluti	2	2-18
Legge dell'inverso del quadrato	3	3-4
Velocità del suono	3	3-10
Riflessione del suono	4	4-9
Frequenza delle note	6	6-12
SQNR	11	11-7
Memoria necessaria per un file audio	11	11-14

Parametri fisici Onda sinusoidale

Data l'equazione sinusoidale

$$y(t) = 10\sin(4 * \pi * t + 4)$$

- Quanto vale l'ampiezza?
 - □ 10 •
- Quanto vale la frequenza?
 - □ 2 Diviso 2
- Quanto vale la fase?
 - **4**

RMS

- Dati i seguenti valori campionati di ampiezza:
- **-1**, 2, **-3**, 1, 0, 3
- Calcolare l'RMS

$$RMS = \sqrt{\frac{(-1^2) + 2^2 + (-3^2) + 1^2 + 0^2 + 3^2}{6}} = \sqrt{\frac{1 + 4 + 9 + 1 + 9}{6}} = \sqrt{\frac{24}{6}} = \sqrt{4} = 2$$

Decibel Assoluti

 Una zavorra per mongolfiere ha un peso di 5000Kg. Calcolare i dB assoluti rispetto al peso di riferimento standard di 5Kg.

$$P_{dB_{Kg}} = 10\log_{10} \frac{5000}{5} = 10\log_{10} 1000 = 10 * 3 = 30$$

Decibel Assoluti

 Una zavorra per mongolfiere ha un peso di 8Kg. Calcolare i dB assoluti rispetto al peso di riferimento standard di 800Kg.

$$P_{dB_{Kg}} = 10 \log_{10} \frac{8}{800} = 10 \log_{10} 0.01 = 10 * (-2) = -20$$

Legge dell'inverso del quadrato

Un suono viene percepito con intensità 90 W/m^2 a distanza 5 metri. Quale sarà la sua intensità percepita a distanza 15 metri?

$$r_0 = 5, r_1 = 15$$

$$r_1/r_0 = 15/5 = 3r_0$$

Il quadrato di 3 è 9

$$\rightarrow$$
 90/9 = 10 W/m²

Velocità del suono

- Calcolare la velocità del suono nell'aria a 42°C
 - Moltiplicare la temperatura per 0.62
 - 42*0.62 = 26.04
 - Sommare la velocità a 0 gradi (331.45 m/s)
 - **26.04 + 331.45 = 357.49 m/s**
- A che temperatura il suono viaggia nell'aria se ha una velocità di a 320 m/s?
 - Sottrarre la velocità a 0 gradi
 - 320 331.45 = -11.45
 - Dividere la velocità per 0.6
 - -11.45 / 0.62 = -19.03°C

Riflessione del suono

- Sapendo che un dispositivo nell'aria a 40°C emette un suono al tempo t e registra lo stesso suono tornare indietro dopo 5 secondi, calcolare la distanza dell'oggetto che ha riflesso il suono all'indietro.
 - Calcolare la velocità del suono misurato
 - 40*0,62 = 24.8 + 331,45 = 356,25 m/s
 - Moltiplicare per il tempo
 - 356,25 * 5 = 1781,25
 - Dividere per 2 (Round Trip Time)
 - 1781,25 / 2 = 890 m

Frequenza delle note

- Fissata a 1397Hz la frequenza del Fa6 (cioè il Fa della 6[^] ottava, con ottave che iniziano e terminano con Do), calcolare quanto vale il Si6
 - Fra Fa6 e Si6 ci sono 6 incrementi tonali
 - □ L'incremento è dato da $2^{\frac{6}{12}} = 2^{\frac{1}{2}} = \sqrt{2} = 1,414$
 - □ 1397 * 1,414 = 1975

		_
	6	
Do	1047	
Do#-Reb	1109	
Re	1175	
Re#-Mib	1245	
Mi	1319	
Fa	1397	\ <mark>\</mark> ₄
Fa#-Solb	1480	-
Sol	1568	$\begin{vmatrix} 1 & 2 \\ 3 & 3 \end{vmatrix}$
Sol#-Lab	1661	
La	1760	4
La#-Sib	1865	5
Si	1976	} 6

SQNR

(1 bit influisce con 6 dB)

- Dato N=10, quanto vale il SQNR?
 - □ 10 * 6 = 60 dB

- Dato un SQNR pari a 66, quanto vale N?
 - □ 66 / 6 = 11

Memoria necessaria per un file audio

Dato un tasso di campionamento pari a 44.1kHz e una PCM a 8bit, quanti byte servono per memorizzare un audio stereo di 2 secondi?

$$\frac{44100*8*2*2}{8} = 176400 = 176KB$$

Dividiamo per 8 perché consideriamo byte

PARTE 2

COMPRESSIONE, FORMATI AUDIO, LIBRERIE AUDIO UTILI E SCRIPT DI INTERESSE

Parte 2

Compressione, Formati Audio e Librerie Audio utili e script di interesse

Esercizio pratico	Autov	Slide
Bit-Rate e Spazio Occupato	14	14-6
Formule μ-Law e A-Law	14	14-varie
Codifica Trasparente	15	15-4
Durata Tick MIDI	17	17-14
Channel Message MIDI	17	17-varie
ffmpeg command	18	script

Bit-Rate e Spazio Occupato

- Qual è il bit-rate di una traccia audio di un segnale mono acquisito con tasso di campionamento pari a 44,1kHz e PCM lineare a 24bit?
 - $1 \cdot 44100 \cdot 24 = 1058400 \text{ bit/s} \cong 1058 \text{ kbps}$
- Quanto spazio occupa 1 minuto di registrazione? [Indicare l'unità di misura]
 - $\left| \frac{(1.44100.24.60)}{8} \right|_{8} = 7938000 \text{ byte } \approx 8 \text{ MB}$

Formule µ-Law e A-Law

Studiate le formule e capite bene i range!

Studente avvisato...

Codifica Trasparente

- Dato un tasso di campionamento pari a 22kHz e un bitrate (compresso) di 128kbps, dire se la codifica sia o meno trasparente.
 - \square 128000 / 22000 = 5,81
 - 5,81 > 2,1 ? Si → è trasparente

Durata Tick MIDI

 Calcolare quanto dura 1 tick essendo BPM=240 e PPQ=48

- Durata di un beat
 - 60 secondi / 240 beat-per-minuto = 0,25 secondi
- Durata di un tick
 - 0,25 secondi-per-beat / 48 PPQ = 0,005 secondi

Channel Message MIDI

- MIDI: Che tipo di Channel Message è il seguente Status Byte? [1 0 0 1 | 1 0 0 1]
 - □ Si guarda il Nibble 1. Che channel message è 1001? → Note On

- MIDI: A che canale è indirizzato il seguente
 Status Byte? [1 0 0 1 | 1 0 0 1]
 - □ Si guarda il Nibble 2. Conversione da binario a decimale (si parte da 0) \rightarrow (1001)₂ = (9)₁₀

ffmpeg command

 Comporre il comando ffmpeg per convertire il file audio.mp3 in uno stereo wav con sample rate 22kHz e codec pcm_s16le

./ffmpeg –i audio.mp3 –vn –acodec pcm_s16le
 –ac 2 –ar 22000 –f wav audio.wav

202021	T	ID

ID Prog.	Domanda	Vera 1	Vera 2	Falsa 1	Falsa 2
03	Come collocare le note sul pentagramma (o rigo musicale)?	Le note più acute sono poste più in alto	Le note più gravi sono poste più in basso	Le note più acute sono poste più in basso	Le note più gravi sono poste più in alto
05	La densità dell'aria attorno ad una bobina di Tesla:	È diversa da quella del plasma	Comporta uno spostamento d'aria	È uguale a quella del plasma	Comporta uno spostamento di plasma
08	Perchè è importante che le automobili emettano suoni?	Sicurezza del pedone	Coinvolgimento alla guida	Per l'inquinamento acustico	Coprire i fruscii aerodinamici
10	Cosa si intende col termine Roughness?	Un suono che cambia velocemente tonalità	Un suono che cambia velocemente frequenza	Un suono caratterizzato da una frequenza elevata	Un suono caratterizzato da un'intensità elevata
11	La Loudness War è:	Una competizione tra case discografiche	Un fenomeno alimentato da un mito popolare sbagliato	Un fenomeno nato negli ultimi anni	Un fenomeno che ha contribuito ad aumentare la qualità sonora dei brani musicali
0B	In quali casi è solo il soggetto affetto dal disturbo uditivo a percepire il suono?	Acufene	Allucinazioni uditive	Amusia	Iperacusia
0C	Quali componenti servono per la realizzazione di un analizzatore di spettro?	Microfono	ARDUINO + display	Altoparlante	ARDUINO + sensore ultrasuoni
0F	Wavenet utilizza:	Campionamento a 16kzh	codifica miu-law	campionamento a 44.1Khz	codifica A-law

PARTE 3

DOMANDE SUI SEMINARI A CURA DEGLI STUDENTI (→ DOMANDA BONUS NEL COMPITO)