RECfusion:

Automatic Scene Clustering and Tracking in Videos from Multiple Sources

F.L.M. Milotta¹, S. Battiato¹, F. Stanco¹, V. D'Amico², G. Torrisi², L. Addesso²

- ¹ Department of Mathematics and Computer Science, University of Catania, Italy
- ² Telecom Italia JOL WAVE, Catania, Italy

Overview

- 1. Motivations
- 2. Main Aims
- 3. Notation
- 4. Intra-flow Classification & Inter-flow Classification
- Cluster Tracking
 - Cluster Log
 - Initialization
 - 3. Tracking
 - 4. Update
- 6. Selection of the Most Represantative Frame for Output
- 7. Demo
- 8. Conclusion and Future Works

Motivations

 The automatic processing of video data from many devices, as smartphones, tablets, webcams, surveillance cameras, etc., in the real-time context is not a trivial issue

Cultural Heritage

Assistive Technology

Social Media

Main Aims

- Analysis of video streams from multi-source multidevice context
- Identification of the scenes
 of interest through
 clustering of video
 sequences
- 3. Time tracking of the computed scenes clusters

Notation

 f_{v_k,t_n}

• Denotes a frame from video stream (device) v_k at time-slot t_n

 S_{ID,v_k,t_n}

• Output of Intra-flow classification: denotes a scene identified by a $Scene_{ID}$ from video stream (device) v_k at time-slot t_n

 C_{ID,v_k,t_n}

• Output of Inter-flow classification: denotes a scene identified by a $Cluster_{ID}$ from video stream (device) v_k at time-slot t_n

 L_{ID,v_k,t_n}

• Output of **Cluster Tracking**: denotes a *cluster* identified by a $LoggedCluster_{ID}$ from video stream (device) v_k at time-slot t_n

Intra- and Inter-flow Classifications

INTRA-FLOW CLASSIFICATION OF d_{ϵ}

Why Cluster Tracking?

Intra-flow Classification:

• The $Scene_{IDs}$ are related to a single video stream. Frames labeled with the same $Scene_{ID}$ but taken from different video streams could definitely represent different scenes!

Inter-flow Classification:

• The $Cluster_{IDs}$ are related to a single time-slot. Frames labeled with the same $Cluster_{ID}$ but taken from different time-slots could definitely represent different scenes!

Cluster Tracking:

• LoggedCluster_{IDs} are related to the whole dataset of video streams: they represent the same scene in every time-slot!

Cluster Tracking (1)

Cluster Tracking (2) – Cluster Log

Cluster Tracking (3) – Initialization

Cluster Tracking (4.1) – Tracking

Minimum Distance + Thresholding

Cluster Tracking (4.2) – Tracking

Cluster Tracking (5.1) – Update

RECfusion

Cluster Tracking (5.2) – Update

Weigthed Update:

Logs become even more stable after each update

$$L'_{a} = \frac{u}{u+1}L_{a} + \frac{1}{u+1}C_{b}$$

• Where u is the number of updates performed, increased by 1 to take into account also the insertion

14

Cluster Tracking (5.3) – Update

#Cluster <= #LoggedCluster

Update:

New log(s) could be defined

#Cluster > #LoggedCluster

Update:

New log(s) will be defined

15

Most Representative Frame of a Cluster at time *t*: Frame with minimum distance from Cluster Centroid

Selection of most representative frame: Behaviour of previous RECfusion version

RECfusion

For each time slot t_n a single representative frame is computed from the most popular (the biggest) cluster

Selection of most representative frame (1): RECfusion + Cluster Tracking

Selection of most representative frame (2): RECfusion + Cluster Tracking

http://recfusionproject.altervista.org/clustertracking.htm

Demo

http://recfusionproject.altervista.org/clustertracking.htm

Demo in a glance

RECfusion

Conclusion

- We have presented an extension to RECfusion:
 - Cluster Tracking has been added:
 - The different scenes within the collection are identified. They
 could be all selected and tracked in the whole collection of
 video-streams by multi-source devices, and might be used in
 the output video.
 - Previously, only the most popular cluster for each time-slot was used in the output video.
 - An evaluation of a better threshold for LoggedClusters update has been conducted:
 - Experimentations asses the goodness of the threshold equal to 0,15

Future Works

Assistive Technology

- We are planning to add some other functionalities:
 - Assistive Technology:
 - Exploiting wearable devices
 - 'How much time have I spent in a specific room?'

- Security & Computer Forensics:
 - it might give an advice on when the scenario is subject to some

RECfusion related publications

- A. Ortis, G. M. Farinella, V. D'Amico, L. Addesso, G. Torrisi, S. Battiato, RECfusion: Automatic video curation driven by visual content popularity, in: ACM Multimedia, ACM MM 2015, 2015, pp. 1179-1182.
- F. L. M. Milotta, S. Battiato, F. Stanco, V. D'Amico, G. Torrisi, L. Addesso, RECfusion: Automatic scene clustering and tracking in video from multiple sources, in: EI Mobile Devices and Multimedia: Enabling Technologies, Algorithms, and Applications 2016, IS&T, 2016.
- Further extension is in progress...

Thanks! Any question?