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Abstract. In this work we focus on digital shape analysis of breast mod-
els to assist breast surgeon for medical and surgical purposes. A clinical
procedure for female breast digital scan is proposed. After a manual ROI
definition through cropping, the meshes are automatically processed. The
breasts are represented exploiting “bag of normals” representation, re-
sulting in a 64-d descriptor. PCA is computed and the obtained first 2
principal components are used to plot the breasts shape into a 2D space.
We show how the breasts subject to a surgery change their representa-
tion in this space and provide a cue about the error in this estimation.
We believe that the proposed procedure represents a valid solution to
evaluate the results of surgeries, since one of the most important goal of
the specialists is to symmetrically reconstruct breasts and an objective
tool to measure the result is currently missing.
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1 Introduction and Motivation

In the last decade 3D scanners have been employed in architecture, engineer-
ing, biology, cultural heritage as well as diagnostic medicine and reconstruction
surgery [1, 2, 3, 4, 5, 6, 7, 8, 20]. These devices allow doctors to get a detailed
virtual model of a human body. The opportunity to acquire body parts shape,
including soft tissues like the female human breast, has motivated our conjunct
study with the medical specialists in breast reconstruction.

Our main aim is to find a discriminative parametrization of female breast
shape i.e., a small set of parameters to objectively describe it. This kind of
mathematical representation gives the possibility to easily define accurate metric
for breast difference evaluation. This result is very attractive for breast surgeon,



since it can be used to develop new tools to assess the symmetry after a breast
reconstruction. It could also be an effective strategy to create clear and well-
defined breast shape categories.

Currently, the surgeons are routinely used to acquire pictures of the patients,
or rather a 2D projection of them. The only way to evaluate the surgery is
still based on a photographic comparison using pictures taken before and after
the surgery. Nevertheless, 3D scanners capture and store more information, like
volume estimation, curvature and so on. The use of these data would enable the
specialists to plan and asses the surgery in a more accurate way.

The 3D scanner acquisition of human body parts requires a certain time and
skills. Long scanning time, tends to increase the patient stress as well as the
amount of noise due to the breath and involuntary micro-movements. Modern
hand-held scanners, reduces these problems by allowing low acquisition time.
Furthermore it guarantees a sufficiently high quality of the data. Actually, ex-
tremely high resolution and accuracy are pointless to capture general shape.
Moreover, dense points clouds would affect the processing time. For this reasons
we propose to perform dataset acquisition with a fast and low-cost hand-held 3D
scanner: Structure Sensor [9]. High portability of hand-held scanners simplifies
the operator job, that can easily turn around the patient.

The 3D data have to be processed and simplified to capture just the informa-
tion that surgeons need for their analysis. In the proposed approach we consider
normals orientation to build a compact representation of breast model. To fur-
ther simplify processed 3D data, Principal Component Analysis (PCA) [10] has
been employed. PCA is a popular and valuable approach to reduce the high
dimensionality of the datasets and capture just the most significant features.
Feature reductions through PCA has already been used in the parametrization
process of the human body parts [11, 12]. Concerning the breast shapes, other
authors proposed to analyse them either using linear measurements, stationary
laser scanner, MRI, X-rays or thermoplastic moulding [13, 14, 15, 16, 17, 18].
Compared to our previous work [20], in this paper we do not employ the planar
projections. Our contribution in the field can be summarized in the following
points:

– The acquisition of 3D breast models to build a proper dataset and perform
significant experiments. At the best of our knowledge there are not available
dataset like this.

– The idea to exploit 3D normals to create a compact representation of 3D
breast models.

– Time and cost optimization by employing a hand-held 3D scanner.

The remainder of this paper is structured as follows: employed devices and
proposed method are described in Section 2. Details on the dataset are provided
in subsection 2.1, while the proposed parametrization method is detailed in sub-
section 2.2. Experimental results are given in Section 3. A final discussion, with
some consideration for future works, ends the paper.



Fig. 1. A Structure Sensor clipped onto an iPad. We used the same setting in our
acquisitions.

2 Material and methods

The study we conducted is mainly focused on digital shape analysis of breast
models to assist breast surgeons for medical and surgical purposes. Our idea
is based on three key points: minimally invasive for the patient, use of low cost
devices, easy data visualization-&-understanding for people with a medical back-
ground.

We employed a 3D scanner with structured infrared light technology that
allows us to acquire the information about depth of thousands of points at the
same time. The Structure Sensor (Fig. 1) is a hand-held scanner proved to be
empirically able to acquire up to 12 meters, although it is recommended a dis-
tance in the range 0.4 and 3.5 meters. Its maximum accuracy is 0.5 mm, but
worsens when the volume of the area scanned is large. Since the scanner uses
infrared rays, it is recommended for indoor usage only. The device is calibrated,
that means each 3D model will show its real size. The sensor itself is not able
to acquire RGB colour mode information, however it is possible to plug into an
iPad and uses the tablet camera to this purpose.

To acquire a breast model, we propose a clinical procedure in which the female
patients hold the hands behind and above the head. In this way the operator
can move around the breast with the Structure Sensor (which is clipped onto the
iPad). Although texture information have been acquired, this has not been used
for the present investigation. An example of the model acquired with Structure
Sensor is shown in Fig. 2.

Once the model is acquired, it is automatically pre-processed through a 3D
processing software (Meshlab [19]), in order to remove noise, isolated vertices
and faces. Mesh editing is followed by a manual definition, through cropping, of
the Region of Interest (ROI). ROI extraction is a critical part of the proposed
procedure. We adopt a simple approach that has been proved to be replicable
and reasonable precise. We manually selected the ROI exploiting four anatomical
reperees suggested by the breast surgeons (Figs. 2 and 3). In our acquisitions,
we scanned both left and right breasts but all of them have been, when needed,



Fig. 2. Example of a textured mesh as it is acquired by the Structure Sensor.

Fig. 3. Definition of ROI through 4 anatomical reperees suggested by the breast sur-
geons. REMOVE: All right breasts have been mirrored in order to make the dataset
right-left side invariant.

vertically mirrored in order to make the dataset right-left side invariant, as shown
in Fig. 3.

Each model is saved with the standard OBJ format, which describes the
information on vertices, faces and face normals. The average number of vertices
is ∼ 1, 500, while the average number of faces is ∼ 4, 000. These models resolution
is not extremely high but it is enough to capture information about breast shape,
which is the point of this work.

2.1 3D Breast Dataset

After review of the study protocol and formal approval by the internal ethic com-
mittee of ASLT (Associazione Santantonese per la Lotta ai Tumori) we gathered



a dataset with breasts acquired from different volunteers, aged between 25 and
65, with different shapes and volumes. The breast surgeons put a label on each
model, describing size and ptosis of the breast. The severity of ptosis is charac-
terized by evaluating the position of the nipple relative to the infra-mammary
fold. Supervised by the doctors, we created a dataset in the following way:

– Main Dataset: is made up of 31 breasts, 17 left and 14 right. To guarantee
a proper dataset variability, we have included breasts of different size and
ptosis.

Then, in order to test the strenght of the proposed methodology, we selected a
patient and acquired her breast several times in pre-operation and post-operation
conditions. Hence, two more groups of meshes is distinguishible:

– Group 1: is made by 52 meshes, 26 left and 26 right. Notice that this set of
meshes has been acquired by two operators, namely a junior and an expert
one, so it can be used to investigate how the proficiency of the operator may
change the parameterization.

– Group 2: is made by 16 breasts, 8 left and 8 right.

2.2 Shape Parametrization

In this subsection we present the method employed to process the 3D models in
order to parametrize the breast shape. Our idea is to describe each 3D model as
histograms of normals. Since normal vectors define the orientation of each model
vertex/face, the proposed algorithm starts with a registration step. Actually,
although the acquisition device is calibrated, it doesn’t have a system to get the
correct orientation into the real space (e.g., gravity sensors). Hence, the meshes
have initially to be oriented along the same direction and its centroid moved
on the origin of a 3D Cartesian coordinate system. As second step, the normal
space is clustered and the occurrences for each cluster counted. This descriptor
is finally reduced by Principal Component Analysis. The summarized pipeline
of proposed method is shown in Fig. 4.

Breast registration As mentioned before, the acquired data have to be roto-
translated since the built descriptor depends on normals orientation. This process
is automatically performed as described in [20]. First of all the mesh centroid is
moved into the origin of a cartesian coordinate system. Subsequently, the average
normal is computed to find the rotation matrix, in order to align it along the
Z axis. This means, we use the unit vector (0, 0, 1) as reference. Finally, to get
the matrix, a closed form named Rodrigues’s rotation formula [21] is employed.
Specifically, given two vectors u1 and u2, formula computes the rotation to align
u1 to u2. In our case u1 = averageNormal and u2 = (0, 0, 1).

Bag of Normals After each mesh has been correctly oriented in our coordinate
system, we can proceed to obtain a representation of the normals distribution
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Fig. 4. Pipeline of the proposed method. Note that PCA is applied on n breast descrip-
tors. Then, the “learnt” transformation matrix is used as model to extract parameters
of all the 3D meshes. Additional details are reported in Section 3.

over a suitably quantized grid. Firstly, all the normals are normalized. We divided
each normal u for ||u||, in order to get a unit vector. By performing this process,
the three components of normal vector (ux, uy, uz) fall in the range [−1, 1]. We
linearly quantize the space of each component into 4 levels, in order to obtain
4 × 4 × 4 = 64 different cluster. Finally, each mesh is represented by counting
the occurrences in each cluster. This histogram with 64 bins is then in turn
normalized to get the final bag of normals descriptor.

Principal Component Analysis (PCA) PCA is a popular statistical method
that is commonly used for finding patterns in data of high dimension or reducing
such dimensionality. This reduction is more interesting when one wants to extract
the main characteristics of complex data. PCA is applied on datasets which
are described by several attributes. It is able to find a linear transformation
which move the data into another space where the transformed attributes are
uncorrelated. The aim is to identify the “Principal Components”, or rather a
reduced set of attributes which represent the original data [10].

We applied PCA on the 64-d descriptors obtained at the previous step in
order to describe each 3D breast with a very small set of parameters, namely 2.
This procedure allows us to represent each 3D model as a point in 2D coordinate
system where axes are the first two Principal Components. The meaning of these
values is discussed in the next section.



(a) (b)

Fig. 5. PCA computed on the Main Dataset. (a) Variance Retain of the first 5 principal
components. The sum of the first 2 principal components is 77.39%. (b) Plot of the 31
models in the Main Dataset using the first 2 principal components.

3 Results

We computed PCA on the 31 models in the main dataset. Exploiting only the
first 2 principal components we obtained a variance retain of 48.04 + 29.35 =
77.39% (Fig. 5(a)) and the models can be represented in a chart, as shown in
Fig. 5(b). The breast surgeons confirmed us the evidence of Fig. 5(b): the first
2 principal components seem enough to distinguish characteristic traits of the
labeled models, since models are clearly separated in the obtained result.

In order to further assess the soundness of the proposed method we plotted
the models of Group 1, exploiting the PCA computed only on the main dataset
(Fig. 6(a)). The left breast is clearly distinguishable from the right one, as ex-
pected. Once more, using the same principal components, we plotted also the
models from Group 2 (Fig. 6(b)). We remark that 3D models in Groups 1 and 2
are all digitization of the breast of the same patient, before and after a surgery,
respectively. The mean and standard deviation of models in Groups 1 and 2
have been reported in Table 1. Error ellipses including the 68%, 95% and 99% of
the data are contextually shown in Fig. 6(b). The Euclidean distances between
centroids of left and right breast clusters for Group 1 and Group 2 are 0.137 and
0.12, respectively. Although the difference between Euclidean distances is tiny,
the distance related to the first principal component (the most meaningful, with
48% of variance retain) is way lower: from 0.136 to 0.014. The distance related
to the second principal component (29% of variance retain) is increased from
0.008 to 0.119.. So, the results shown in Table 1 and Fig. 6(b) are a confirmation
that the right breast and left breast after the surgery (meshes from Group 2)
have now a first principal components that has pretty similar mean and variance
values, while before the surgery (Group 1) they were different.
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Fig. 6. Plots of the models in Group 1 and Group 2 using the first 2 principal compo-
nents of PCA computed on the Main Dataset. (a) Visual comparison of the principal
components of Group 1 between models acquired by the two groups of operators, prop-
erly juniors and experts. (b) Comparison of the principal components between Group 1
(pre-surgery) and 2 (post-surgery). Error in the parametrization has been highlighted
through error ellipses added on each set of models. Starting from the ellipsis centroid
(the mean value of the set), each concentric error ellipsis contains the 68% (σ), the
95% (2σ) and the 99% (3σ) of the elements, respectively.

Table 1. Mean and Standard Deviation of models in Group 1 and 2. L stands for Left,
R for Right. Each entry is a pair in which the values are related to the first and second
principal component, respectively.

Group 1 Group 2
L R L R

Mean (0.1269, 0.0198) (−0.0098, 0.0281) (−0.0124, −0.0352) (−0.0273, 0.0843)

Stand. Dev. (0.0127, 0.0262) (0.0138, 0.0139) (0.0181, 0.0353) (0.0258, 0.0129)

The comparative chart with the components of all the digitized breasts
is shown in Fig. 7. Some significant cases from Main Dataset are shown in
Figs. 8(a) - 8(c), while the patient scanned in Groups 1 and 2 is shown in
Figs. 8(d) and 8(e). The breast surgeons confirmed us that the positions of mod-
els from these latter sets are coherent with respect to the one of the models from
Main Dataset. These results show that the first principal component is strong
enough to characterize the shape of a breast, and through the standard deviation
computations on Group 1 and 2 we can also give a cue about the error in this
estimation.



Fig. 7. Comparison of the first 2 principal components (X and Y axis, respectively)
between different datasets. PCA computed on the main dataset, comparison between
the main dataset, Group 1 and Group 2.

(a) (b) (c) (d) (e)

Fig. 8. Significant acquired models. (a-c) Models from Main Dataset with principal
components (−0.17;−0.04), (0;−0.02) and (0.11;−0.01), respectively. They are in the
most left, central e right position of the plot of Fig. 5(b). A clear difference about the
shape of the breasts can be noticed. (d-e) Patient of Group 1 (pre-surgery) and Group 2
(post-surgery), respectively; note that we considered right breast the one corresponding
to the right arm of the patient.

4 Conclusions

In this work we have focused on digital shape analysis of breast models to assist
breast specialists for medical and surgical purposes. We fixed three key points
for our proposed solution: minimally invasive for the patient approach, use of low
cost devices, easy data visualization-&-understanding for people with a medical
background. We proposed a clinical procedure in which the female patients hold



the hands behind and above the head, while an operator can digitize her breast
with a 3D scanner. After a manual ROI definition through cropping, the meshes
are automatically processed. The breasts are represented exploiting bag of nor-
mals representation, resulting in a 64-d descriptor. A reference dataset has been
used to compute PCA on a set of discriminative and different breasts, and the
obtained first 2 principal components have been used to plot the breasts into
a 2D space. We empirically proved that breasts subjected to a surgery change
their representation in this space, and through the variance computations on
Group 1 and 2 we also gave a cue about the error in this estimation. We believe
that the proposed procedure, assessed by the surgeon, represents a valid solu-
tion to evaluate the results of surgeries, since one of the most important goal of
the specialists is to symmetrically reconstruct breasts, but an objective tool to
measure the result is currently missing. As future works, we planned to augment
the ROI extraction phase, which is a critical part of the proposed procedure and
requires professionals with a proper know-how of 3D object editing.
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